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In hydrodynamics there is only one type of mixed flow, associated with 
the transition from elliptic subsonic flow to hyperbolic supersonic flow. 

As shown below, in magnetohydrodynamics there are several types of 
mixed flows, described not only by Tricomi’s equation q!~yy - ~4%~ = 0, but 
also by the equation 56,x - y$yy = 0, which has essentially different pro- 
perties from the other. Boundary-value problems for these equations are 
formulated differently than in the case of Tricomi’s equation in ordinary 
gasdynamics, since they have to be satisfied by functions having a 
different physical significance. 

We consider below certain types of mixed flows. For each of them we 
derive the equations and laws of similitude. Simple examples of mixed 
flows in nozzles are given. 

1. The equations of magnetohydrodynamics for an ideal gas with in- 
finite electrical conductivity have the form 

divpV=O, divII==O, rot(JIxV)=O (1.1) 

(V*v)V = -F=&JIxrot JJ -$- = const (14 

Here H and V are the vectors of the magnetic field and the velocity, 
p is the pressure, p is the density, and K is the ratio of the specific 

heats. 

When V is parallel to H it follows from the first two equations (1.1) 
that 

(‘1.3) 
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where Hz9 HyB V,, Vy are the components of the vectors of field and 
velocity parallel to the Cartesian axes of x and y. 

The relations (1.3) enable us to eliminate the magnetic field from 

(1.2), while Bernoulli's equation [l I, which is valid for the flow 

under consideration, enables us to eliminate p and p from the equations. 

As a result we obtain 

where a is the speed of sound and V" is the Alfven speed. let us direct 
the x-axis along a streamline. Then Equations (1.4) may be written as 

(l-M++ 2 = 0, [W(l + NB)-N$&Wva)~ = 0 (1.5) 

'lhe equations change their type El 1 when one of the coefficients of 
the derivatives passes through zero. Obviously, this occurs when M= 1, 

M= N and M= N/t/ (1 + N'). The character of the transition when M= 1 
and M= N differs according to whether N> 1 or N < 1. Interest also 

attaches to the case when M= N = 1. 

We give below an analysis of these six cases. 

We notice that, according to (1.3) 

N21MZ = W2/M2),(~l~,) (W 

where (N '/M2}~ is the limiting value of the ratio N~~2 when M+ 0, and 

p,, is the stagnation density. If (N2/M2>, < 1, then in the whole flow 
N < M, and consequently the only possible transition is the transition 
with M= 1 and N< 1. Such a transition is qualitatively similar to the 

transonic transition in classical gasdynamics, studied in the works of 

F.I. Frankl, S.V. Falkovich, Guderley and others. 

Accordingly, new types of mixed flow can arise only when (N 2/M2& > 1, 
i.e. for high densities of magnetic energy. 
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All quantities relating to points where M= 1 will be denoted, as 

usual, by a subscript asterisk. Quantities relating to points at which 

iM= N/4(1 +N2) will be denoted by two subscxipt asterisks. Quantities 

relating to points at which M= N, i.e, the speed is equal to the Alfven 
speed: Y = V”, will be distinguished by a superscript'. 

2. Flow near the curve ill = RI,,. kt Fz = V*‘,*(l + u) and 
Vy = V**Y, where u and v are small quantities. Retaining in Equations 

(1.4) only the terms of the lowest order, we obtain 

(1 -M**2)Ur + vy = 0, [3 + (X - 2)iJ!!,+3]UUy + 2,~ = 0 (2.1) 

where the subscripts x and y indicate derivatives with respect to the 

corresponding variable. Substituting the variables 

1 - M,,Z 
u = 3 + (?c - 2)M,,” E, 

(1 - M*~)3 
” = 3+(x-2)M,,2 ‘I (2.2) 

we reduce the system (2.1) to the canonical form 

The first of bations (2.3) permits the introduction of a function 

9 such that 

E =%I, rl=-9% (2.4) 

Then from the second of Equations (2.3) we have 

let us introduce the Iegendre function 

Y(E, rl) = -Q3(% ?/x+ EY-rlx 

It is obvious that 

x=---YliYn, ?I=Yc 

(2.6) 

(2.7) 

Transforming in the second equation (2.3) to the hodograph plane 5, 

'I, we obtain yE +5x,= 0, or 

%?-4Y,, =o (2.8) 

Equation (2.5) is analogous in form to the equation for the velocity 

potential in classical transonic flow. Similarly, Equation (2.8) coin- 

cides with the equation for the stream function or legendre potential of 

transonic flow. It is clear that the solutions of equations of type (2.5) 
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or (2.8) obtained fox transonic flows will describe quite different 
flows in the case under consideration. The bound- 
ary-value problems also have a different formula- 
tion. 

Fig. 1. 

‘Ibe equations of the characteristics in the 
physical plane and in the hodograph plane have 
the following forms, respectively: 

(2.9) 

dy = l/E”“, d?J = *-t/@Q or ?J = c4;E” 

The characteristics are real and the equations 
are of hyperbolic type when 6 > 0. Limit lines 
can arise in the flow only in the hyperbolic 
region, since the determinant 

can vanish only if [ > 0. 

Let us consider a simple example of the flow of mixed tyne under con- 
sideration. 

It is easy to see that $I= cxy is a solution of Equation (2.5). 
According to (2.4) we have c = cx and q = - cy. The streamlines and 
characteristics of this flow have the respective forms 

?J = Cl/(1 + C5), Y =1 Ca f $%Z”* 

This flow is depicted in Fig, 1. We notice that it has a straight 
line of transition. 

Let us introduce the new variables 

where x,, is a characteristic linear dimension of the flow and T is a 
characteristic gradient of the velocity vector. It is easy to see that 
the functions marked with an asterisk satisfy the canonical system (2.3). 
Two flows, for which the functions u* and u* are equal at points with 
the same values of x* and y*, are said to be similar. It is evident that 
similar flows must have equal values at infinity for the quantity 
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where E = Moo= M** is a small quantity, and M, is the Mach number of the 
flow at infinity. 

The relations (2.10) and (2.11) give the similarity law for the flows 

under consideration, while the quantity k is the similarity parameter. 

The pressure coefficient on a slender body is determined by the ex- 
pression 

P-P** CP = ~ = - 2u = - 2’G’/*p-‘I*77%~‘(~, $) 
l’~P*,v*,a 

(2.12) 

If x0 is the length of the body, then the drag and lift coefficients 

are given by 

c, = -$ 
$ 
c,rdx = _2'6%~-%r-'/~ 

$ 
u'(k; x*)$&z* = -~Va~-%+aF,(k) 

cV = ~~c,dx=-2~ai~P-'f~~-1f~ S,$&* = _ 2T'l~~-%y-'/+',(k) 

3. Trans-Alfven flows. Now let Vz = V” (1 + u) and Vy = Vov. 
Then the simplified system of Equations (1.4) 

has the form 

(1 -M02)Uz + ZQ = 0, u;-ZLUC; = 0 (3.1) 

When MO =N” < 1 the canonical system is 

L-k %/ = 0, &l---E%= 0 

(E = u(l - JP), 11 = V) (3.2) 

Introducing the functions $ and Y by the 

relations (2.4), (2.6) and (2.7) we obtain 

Fig. 2. 

[Iere the equations have the hyperbolic form when 5 < 0. Along the 

characteristics (when e < 0) we have 

dy = III (- &-l/pdx, dq = III (-_E)-‘/zdE or VJ = Cl&VI/_ (3.4) 

It is evident that the function $I= cxy satisfies the first equation 
(3.3), and consequently c = CZ, n = - cy. The streamlines of this flow 
(Fig. 2) coincide with the streamlines of the flow depicted in Fig. 1. 

The equation of the characteristics is y = CI f 2c -I/2 d - x_ Here again 

the transition line is straight, 
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When M" = No > 1 the canonical system has the form 

(3.5) 

Introducing the functions I,LJ and Y by the relations 

E = h rl = 4h9 Y=--_+fg+rlz, z=y,,, Y=& (3.6) 

we obtain 

These equations are hyperbolic when &> 0, so that along the character- 

istics when 5 > 0 we have 

dy = f E-“dx, dq = k E--‘JadE or Tl=Cf2't/% (3.8) 

The solution I) = cxy here describes the flow in a conical nozzle (Fig. 
3) with streamlines y = ~~(1 + cx) and characteristics y = c1 k 2c -l/2 \/z. 

Ihe similarity law for trans-Alfven velocities (V * V") is given by 

the relations 

x = 50 x*, y = x()r-l y*, v = mJ*, u zzz p-“+U’ (3.9) 

k = 2-2 p” &f-(1 + 2g f$f 02 
> 
-l g (E=M,-W) (3.10) 

wherep2= l-MO2 when MO< 1 and p2= Mo2- 1 when MO> 1. 

The functions with asterisks satisfy the respective canonical systems 

(3.2) and (3.5). For pressure and force we have 

cP = - ~T~F-~v* (k, z*), c, = T~P-~&(~), cy = 22 F2 (k) 

where c p = (p - PO,/ l/2 pOzP. 'Ihe dependence of the drag on the thick- 

ness of the body is found to be stronger than in classical transonic 

flows. 

4. Transonic flows. Now let V = V*(l + u), Vy = V*u and M, = 
1 f N*. The simplified system (1.4), tl.5) in this case takes the form 

- (x + 1) uu, + vy = 0, uy - (1 - N,“) Z’r = 0 (4.lj 

It is easy to see that when N, < 1 Equations (4.1) differ only by the 

multiplying factor (1 - N*2) in the second equation from the system of 
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equations for classical 

Fig. 3. 
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transonic flows. In this case the flow pattern 

agrees qualitatively with the usual transonic 

flows. 

When N* > 1 the elliptic and hyperbolic 

regions change places, i.e. the flow is hyper- 

bolic in the subsonic region (u < 0) and elliptic 

in the supersonic region (u > 0). Accordingly, 

by the substitution u1 = - u the system (4.1) 

can be reduced to the ordinary transonic form. 

In Fig. 4 we depict such a flow, correspond- 

ing to the solution 

u = cz _ C2(Xf1) y2, 

2 
v=c2(x+1)ccy_(~+;)~c3 y” 

which is analogous to the well-known non-magnetic 

transonic flow. In Fig. 4 the characteristics 

are shown by broken curves, while the curve v= 0 

is shown by a chain-dotted curve. 

Of special interest are the flows associated with M* = N* = 1. In 

this case the simplified system of equations has the form 

+ (xt_ l)uu, +vv == 0, UT, - ULJr = 0 (4.2) 

Here the flow is of hyperbolic type both when u < 0 and when u > 0. 

In the hodograph plane the system (4.2) transforms to 

-(x + l)uy, j-r, = G, z, - UJJU = 0 (4.3) 

Eliminating the mixed second derivative of x, we obtain 

n[(~+--)y,,-&LUl+?/U-O 

The characteristics in the hodograph plane and in the physical plane 

are 

o=c*~/x+lI& &/ zzz -& (x -; 1)-l,': u-l& (4.4) 

It is easy to see that the system (4.2) admits a solution of the form 

u = (r / c) ‘p (Y / c). v = (r / c) $ (Y / c) 

In particular, we have 

U = l/x + 1 (5 / c) see (Y / c), v=(r/c)ten(y/c) 
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This solution describes the flow depicted in Fig. 5. The flow chart we 
obtain is symmetric with respect to the straight transition line x = 0. 

Fig. 4. Fig. 5. 

Clearly, in such a flow it is completely immaterial whether the gas flows 
from the subsonic region to the supersonic region or vice versa. 

Similar flows are defined by the following relations: 

Ic=C&)1c+, y = 1cg T-12/, 22 = z (1 +X)--W, v = TV* (4.5) 

k = 22-l (1 + x)-‘/g E (E = _I!, - 1) (4.6) 

Correspondingly for pressure and force we have 

:p = - 22 (1 + x)-” u*, c, = ,r2 F, (k), cy = TF, (k), P-P. 
CP = 1/2 (4.7) 

5. The flows of mixed type analysed above can occur in nozzles in the 
following combinations: 

1) When (N2/M2),< 1 in a nozzle there is only one region of mixed 
flow - near the sonic line. IIhis flow is qualitatively similar to the 
transonic flow of ordinary gasdynamics. 

2) When (N2/M2), < p,/p,, then in addition to the transonic transition 
of familiar type there are added the transitions when M = N/d (1 + N2) 
and M = N, which were analysed in Sections 2 and 3, and which bound a 
subsonic hyperbolic region. 

3) When (N2/M210 > p,Jp the subsonic hyperbolic region extends from 
M = N/d (1 + N2) to the ionic line, where the transition to elliptic 
supersonic flow analysed in Section 4 takes place. Ihe supersonic 
elliptic region is brought to an end by the trans.-Alfven transition to 
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hyperbolic flow analysed in Section 3. 

4) When (N*/M*), = p,,/p, the transition from elliptic flow to hyper- 

bolic occurs when M= iV/\l (1 + I*) < 1. The whole flow for large velo- 

cities has hyperbolic type with parabolic degeneracy on the sonic line 

(see Section 4). 
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